Mid-Semestral Exam Algebra-II M. Math - First year 2013-2014

Time: 3 hrs Max score: 100

Answer question 1 and any 5 from the rest.

- (1) State true or false. Justify your answers. No marks will be awarded in the absence of proper justification.
 - (i) Every algebraic extension is a finite extension.

(ii) Every finite normal extension of a field F is a splitting field of a polynomial in F[x].

(iii) Let f(x) be a non-constant polynomial over a finite field F, such that derivative of f(x) is zero. Then f(x) is irreducible.

(iv) Let $F \subseteq L \subseteq K$ be fields, such that L|F and K|L are both Galois extensions. Then K|F is Galois. 5+5+5+5

- (2) (i) For any field F, show that there exists an algebraically closed field K containing F.
 (ii)Let f(x) ∈ Q[x] be irreducible over Q. Let F be the splitting field of f(x) over Q. If [F : Q] is odd, prove that all roots of f(x) are real. 10+6
- (3) Show that the cyclotomic extension $\mathbb{Q}(\zeta_n)|\mathbb{Q}$, where ζ_n is a primitive *n*th root of unity is of degree $\phi(n)$ over \mathbb{Q} (ϕ denotes the Euler's phi-function). 16
- (4) (a) Let K|F be a finite Galois extension. Suppose that a ∈ K satisfies σ(a) ≠ a for all σ ∈ Gal(K|F), σ ≠ 1. Prove that F(a) = K.
 (b) Let ζ be a primitive 8th root of unity over Q. Let p be an odd prime integer.
 - (i) Prove that $\sqrt{p} \notin \mathbb{Q}(\zeta)$. (ii) Prove that $\mathbb{Q}(\zeta, \sqrt{p}) = \mathbb{Q}(\zeta + \sqrt{p})$. 6+10
- (5) (a) State fundamental theorem of Galois theory.
 (b) Suppose that F = K₀ ⊆ K₁ ⊆ ··· ⊆ K_n = E, where E|F is a Galois extension, and that the intermediate field K_i corresponds to the subgroup H_i under the Galois correspondence. Show that K_i|K_{i-1} is normal (hence Galois) if and only if H_i is a normal subgroup of H_{i-1}, and in this case, Gal(K_i/K_{i-1}) is isomorphic to H_{i-1}/H_i. 6+10
- (6) (a) Suppose K is a finite, separable, normal extension of a field F and L_1 and L_2 are normal extensions of F in K. Show the smallest field L in K containing L_1 and L_2 is a normal extension of F.

(b) Find a Galois extension K of \mathbb{Q} such that $Gal(K|\mathbb{Q})$ is isomorphic to $\mathbb{Z}_5 \times \mathbb{Z}_8$. 6+10

- (7) (a) Compute the splitting field K of the polynomial $f(x) = x^4 2$ over \mathbb{Q} .
 - (b) Show that K is a Galois extension of \mathbb{Q} .
 - (c) Compute the degree of the extension $[K : \mathbb{Q}]$.
 - (d) Identify the Galois group $Gal(K|\mathbb{Q})$.
 - (e) What are all the subgroups of $Gal(K|\mathbb{Q})$?
 - (f) What are all the intermediate subfields of $K|\mathbb{Q}$?
 - (g) Among the intermediate subfields, which are normal?

2 + 2 + 2 + 2 + 3 + 3 + 2